Getting Started
Install Metbit from PyPI and run your first analysis.
Requirements: Python 3.9+ (3.10/3.11 recommended), pip or conda/mamba with pip.
Install
pip install metbit
Use a virtual environment
python -m venv .venv
source .venv/bin/activate # Windows: .venv\Scripts\activate
pip install metbit
Minimal Example
- Load your data (X = features, y = classes)
- Fit OPLS‑DA and compute VIP scores
- Visualize important features
import pandas as pd
from metbit.metbit import opls_da
df = pd.read_csv('your_data.csv')
y = df['Group']
X = df.drop(columns=['Group'])
model = opls_da(
X, y,
features_name=list(X.columns), n_components=2,
scaling_method='pareto', kfold=3,
estimator='opls', random_state=94, auto_ncomp=True
)
model.fit()
fig = model.vip_plot(threshold=1.0)
fig.show()
Preprocessing (optional)
Use Metbit utilities to prepare spectra before modeling.
from metbit.nmr_preprocess import nmr_preprocessing
from metbit.utility import Normalise
prep = nmr_preprocessing(...)
X = prep.X # DataFrame
Next Steps
Browse Full API →Explore Overview
- nmr_preprocess: /docs/api/nmr_preprocess
- Modeling (opls_da, pca): /docs/api/metbit
- Utilities (Normalise, UnivarStats): /docs/api/utility