Back to API
API Documentation
utility
Category: Data Processing
Classes
lazypair
Methods
init(dataset, column_name)
get_index()
get_name()
get_meta()
get_column_name()
get_dataset()
gen_page
Methods
init(data_path)
This function takes in the path to the data folder and returns the HTML files for the OPLS-DA plots.
Parameters
data_path
: str The path to the data folder. gen_page(data_path).get_files()
get_files()
oplsda_path
Methods
init(data_path)
make_path()
get_path()
Normality_distribution
Methods
init(data)
plot_distribution(feature)
pca_distributions()
Normalise
Methods
init(data, compute_missing)
pqn_normalise(ref_index, plot)
decimal_place_normalisation(decimals)
This function returns the dataframe with values rounded to a specified number of decimal places.
Parameters
decimals
: int The number of decimal places to round to.
z_score_normalisation()
This function returns the dataframe normalized using Z-Score.
linear_normalisation()
This function returns the dataframe normalized using Min-Max (linear normalization).
normalize_to_100()
This function returns the dataframe with values normalized to 100.
clipping_normalisation(lower, upper)
This function returns the dataframe with values clipped to the specified range.
Parameters
lower
: float The lower bound for clipping.upper
: float The upper bound for clipping.
standard_deviation_normalisation()
This function returns the dataframe normalized using Standard Deviation.
UnivarStats
Perform univariate statistical analysis and visualization using Plotly.
Constructor Parameters
df
: pd.DataFrame Input DataFrame containing the measurement and group columns.x_col
: str Column name for the grouping variable.y_col
: str Column name for the measurement variable.group_order
: list of str, optional Custom group plotting order.custom_colors
: dict of str -> str, optional Mapping from group name to color.stats_options
: list of str, optionalSupported
: ["t-test", "anova", "nonparametric", "effect-size"].p_value_threshold
: float, default=0.05 Significance threshold.annotate_style
: symbol, default='value' Annotation style: numeric or stars.y_offset_factor
: float, default=0.35 Vertical spacing factor for annotations.show_non_significant
: bool, default=True Whether to display 'ns'.correct_p
: str or None, default='bonferroni' Method for multiple testing correction. Supported: - 'bonferroni', 'holm', 'hochberg', 'hommel' - 'fdr_bh', 'fdr_by', 'fdr_tsbh', 'fdr_tsbky' - None or 'none' = no correctiontitle_
: str, optional Plot title.y_label
: str, optional Y-axis label.x_label
: str, optional X-axis label.fig_height
: int, default=800 Figure height.fig_width
: int, default=600 Figure width.plot_type
: violin, default='box' Plot type.show_axis_lines
: bool, default=True Whether to show axis lines.
Methods
init(df, x_col, y_col, group_order, custom_colors, stats_options, p_value_threshold, annotate_style, y_offset_factor, show_non_significant, correct_p, title_, y_label, x_label, fig_height, fig_width, plot_type, show_axis_lines)
compute_effsize(a, b, eftype)
plot(show_description)
get_stats_table()
Return a DataFrame of statistical results.